Экологический портал

Главная | Регистрация | Вход
Суббота, 14.06.2025, 13:20
Приветствую Вас Гость
Меню
Категории раздела
Мои статьи [156]
экологические словари [47]
экологические термины [111]
Основы общей экологии [361]
законы экологии [12]
ученые экологи [54]
экологические проблемы [145]
Учение о биосфере [31]
Экология человека [129]
Прикладная экология [94]
Экологическая защита и охрана окружающей среды [223]
экологическое право [23]
Экология и общество [64]
медицинская экология [30]
растения [19]
животные [33]
биология [70]
карты [23]
Статьи разной тематики [100]
Статьи не относящиеся к экологии
реймерс словарь терминов. природопользование [1]
Вакансии на сайте
    Сайту ecology-portal.ru требуются модераторы.
    icq: 490450375


    хорошая оплата
Главная » Статьи » Мои статьи

загрузка...

Экстраядерные детерминанты наследственности

Экстраядерные детерминанты наследственности

Длительное время считали, что ДНК содержится только в ядрах клеток, и вся наследственность понималась в качестве ядерной. Между тем с развитием молекулярно-генетических методов исследований стали обнаруживать ДНК, находящуюся за пределами ядра как у прокариотов, так и в клетках эукариотов. Эта ДНК получила название экстраядерной (экстрахромосомной) ДНК, а кон-тролируемую такой ДНК последовательность — экстраядерной или экстрахро-мосомной.
Перечислим формы экстраядерных (экстрахромосомных) ДНК прокарио-тов и эукариотов:
1. ДНК плазмид: бактерии, низшие грибы и другие организмы.
2. ДНК органелл: митохондрии, хлоропласты, кинетопласты.
3. ДНК амплифицированных генов: гены, контролирующие синтез от-дельных белков.
4. Малые полидисперсные кольцевые и линейные ДНК: экстрахромосом-ные копии повторяющихся (часто транспозируемых) последовательностей ДНК.
Плазмиды. Плазмиды встречаются в цитоплазме как прокариотов, так и эукариотов, причем у бактерий они являются обычными обитателями. В част-ности, они идентифицированы почти у всех видов бактерий, имеющих меди-цинское (являющихся возбудителями болезней) или сельскохозяйственное и промышленное значение.
Плазмиды бактерий — это генетические структуры, находящиеся в цито-плазме и представляющие собой молекулы ДНК размером от 2250 до 400 000 пар азотистых оснований. Они существуют обособленно от хромосом в количе-стве от одной до нескольких десятков копий на одну бактериальную клетку. Различают три типа бактериальных плазмид: факторы генетического переноса, коин-тегративные и неконъюгативные плазмиды (рис. 108).
Факторы переноса обладают лишь генами репликации и переноса. Бла-годаря генам репликации такие плазмиды способны к бесконечно долгому поддержанию и воспроизводству в автономном (экстрахромосомном) состоянии, а благодаря генам переноса — к передаче от одних клеток к другим, часто преодолевая в скрещиваниях видовые и родовые барьеры. Бактерии, содержащие плазмиды этого типа, служат генетическими донорами. Они способны вступать в скрещивания с клетками, не содержащими плазмиды.
Коинтегративные плазмиды представляют собой фактор генетического переноса, сцепленный с генами, контролирующими синтез тех или иных белков, имеющих значение для бактерий. Например, плазмиды R контролируют синтез ферментов, придающих бактериям устойчивость к антибиотикам, суль-фани-ламидам и другим лекарственным веществам, плазмиды Ent — синтез энтеротоксинов, Col — колицинов, Hly — гемолизинов. Известны также плазмиды, контролирующие разрушение многих органических соединений и др. свойства. Благодаря фактору переноса эти плазмиды конъюгативны.
Неконъюгативные плазмиды — это плазмиды, которые не передаются от одних клеток к другим, т. к. они не обладают фактором переноса. Они тоже де-терминируют лекарственную устойчивость и другие свойства бактерий. Пере-дача неконъюгативных плазмид от одних бактерий к другим обеспечивается содержащимися в клетках факторами переноса или коинтегративными плазми-дами, которые мобилизуют их на перенос. Среди эукариотов плазмиды иден-тифицированы у низших грибов. Одна из таких плазмид у дрожжей S. cerevisiae представляет собой кольцевые молекулы ДНК размером в 6318 пар оснований, существующие в количестве 80 копий на гаплоидный геном и кодирующие белки, необходимые для собственной репликации и рекомбинации. У нейрос-поры (Neurospora) плазмиды обнаружены в виде малых кольцевых молекул ДНК размером 4200-5200 пар оснований, встречающихся в количестве около 100 копий на гаплоидный геном, а у плесени Aspergilus niger — в виде кольце-вых молекул ДНК размером около 13 500 пар оснований в количестве около 100 копий на клетку.
ДНК органелл. ДНК этого класса обнаружена в случае как низших, так и высших эукариотов.
Молекулы ДНК, выделяемые из митохондрий соматических клеток жи-вотных и хлоропластов клеток растений, характеризуются небольшими разме-рами. Например, размеры молекул ДНК (гено-мов) митохондрий (мтДНК) раз-ных животных (включая плоских червей, насекомых и млекопитающих), со-ставляют 15 700—20 000, человека — 16 569 пар азотистых оснований. У про-стейших, например у трипаносом и парамеций, митохондриальный геном равен 22 000 и 40 000 пар оснований. Геном хлоропластов у высших растений состав-ляет 12 000 — 200 000 пар оснований, у дрожжей — 78 000 пар оснований, у зеленых водорослей — 180 000 азотистых оснований. Во многих случаях пока-зано, что ДНК митохондрий и хлоропластов сплошь состоит из нуклеотидных последовательностей, гомологичных последовательностям хромосомной ДНК.
Митохондриальный геном человека состоит из 13 генов, нукле-отидная последовательность которых определена и для которой характерно полное или почти полное отсутствие некодирующих участков. Эти гены кодируют собст-венные рибосомные РНК (12S- и 168-рРНК.) и 22 разные транспортные РНК, а также разные поли-пептиды, включая субъединичные компоненты I, II, III ок-сидазы цитохрома С, субъединицы 6 АТФазы, цитохрома В и девяти других белков, функции которых не известны.
Геном хлоропластов ряда высших растений состоит из 120 генов. Они ко-дируют 4 рибосомных РНК, 30 рибосомных белков, часть субъединиц хлоро-пластной РНК-полимеразы, часть белков, содержащихся в фотосистемах I и II, белковые субъединицы АТФ-синтетазы и отдельных ферментов цепи транспор-та электронов, а также белковую субъединицу рибулозобисфосфаткарбоксида-зы и очень многих тРНК. Хлоропластный геном очень сходен с бактериальным геномом как по организации, так и по функциям. В митохондриальном геноме человека, вероятно, отсутствуют интроны, но в ДНК хлоропластов некоторых высших растений, а также в ДНК митохондрий грибов интроны обнаружены. Считают, что хлоропластные геномы высших растений остаются без изменений примерно несколько миллионов лет. Возможно, что такая древность характерна и для митохондриальных геномов млекопитающих, включая человека.
Характер передачи мтДНК по наследству у разных организмов различен. Например, у дрожжей в результате одинакового вклада мтДНК сливающимися гаплоидными клетками в зиготу митохондриальный геном наследуется потом-ством от обоих родителей. Между тем показано, что у D. melanogaster и мышей мтДНК передается по материнской линии. По данным посемейного распреде-ления ДНК в больших семьях предполагают, что мтДНК у человека также на-следуется по материнской линии. Однако у морских голубых двустворчатых раковин из рода Mytilus она передается как по материнской, так и по мужской линии, причем тип передачи зависит от пола потомства. Женские митохондрий передаются матерями сыновьям и дочерям, тогда как мужские митохондрий передаются отцами сыновьям. Но у этих животных иногда встречается и пере-дача женских митохондрий от отцов к дочерям. У большинства высших расте-ний ДНК хлоропластов тоже наследуется по материнской линии.
ДНК, обнаруживаемая в кинетопластах трипаносом, представлена малы-ми (2,500 п. о.) и крупными (3700 п. о.) кольцевыми молекулами.
ДНК амплифицированных генов. Эта ДНК встречается в форме экст-рахромосомных кольцевых молекул. Например, когда эука-риотические клетки культивируют в средах с лекарственными веществами, то происходит селекция резистентных клеток с повышенным количеством копий гена, контролирующе-го резистен-тность. Клетки многих опухолей содержат также экстрахромосом-ные амплифицированные гены (наряду с хромосомными).
Малые полидисперсные кольцевые и линейные ДНК. Молекулы ДНК этого типа (мпкДНК) имеют размеры от нескольких сот до десятков тысяч нук-леотидных пар и встречаются как в цитозоле, так и в ядре и митохондриях кле-ток многих организмов-эукариотов. Эти молекулы ДНК происходят или связа-ны с ДНК хромосом и органелл. Многие из этих молекул ДНК способны к транспозиции. 


Категория: Мои статьи |Добавил: iDix009 (10.06.2009)
Просмотров: 2980 | Рейтинг реферата / статьи Экстраядерные детерминанты наследственности: 0.0/0 |
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Наш опрос
Как вы связаны экологией ?
Всего ответов: 4345
Читайте также:
загрузка...

мониторинг глобальное потепление климата , парниковый эффект РЕКРЕАЦИОННАЯ СРЕДА Эпифиз, или шишковидная железа влажность - воды - вода и растения, животные АВТОТРАНСПОРТ И ЧЕЛОВЕК Инженерная экологическая защита - Принципиальные направления инженерной защиты окружающей среды Загрязнение среды Кругооборот азота Загрязнение окружающей среды токсикантами и количественные критерии оценки его фактического уровня

Copyright ecology-portal.ru © 2025 Хостинг от uCoz