Организм человека включает множество химических элементов: обнаружено присутствие 86 элементов из таблицы Д. И. Менделеева. Однако 98% массы нашего организма образовано всего четырьмя элементами: кислородом (около 70%), углеродом A5—18%), водородом (около 10%) и азотом (около 2%). Все остальные элементы подразделяются на макроэлементы (около 2% массы) и микроэлементы (около 0,1% массы). К макроэлементам относят фосфор, калий, натрий, железо, магний, кальций, хлор и серу, а к микроэлементам — цинк, медь, иод, фтор, марганец и другие элементы. Несмотря на очень малые количества, микроэлементы необходимы как каждой клетке, так и всему организму в целом. В клетках атомы и группы атомов различных элементов способны терять или приобретать электроны. Так как электрон имеет отрицательный заряд, то потеря электрона приводит к тому, что атом или группа атомов становятся положительно заряженными, а приобретение электрона делает атом или группу атомов отрицательно заряженными. Такие электрически заряженные атомы и группы атомов называются ионами. Противоположно заряженные ионы притягивают друг друга. Связь, обусловленная таким притяжением, называется ионной. Ионные соединения состоят из отрицательных и положительных ионов, противоположные заряды которых равны по величине, и поэтому в целом молекула электронейтральна. Примером ионного соединения может служить поваренная соль, или хлорид натрия NaCl. Это вещество образуют ионы натрия Naf с зарядом +1 и хлорид-ионы СГ с зарядом -1. В состав клетки входят неорганические и органические вещества. Среди неорганических преобладает вода, содержание которой колеблется от 90% в организме эмбриона до 65% в организме пожилого человека. Вода — универсальный растворитель, и почти все реакции в нашем организме проходят в водных растворах. Внутреннее пространство клеток и органоидов клеток представляет собой водный раствор различных веществ. Растворимые в воде вещества (соли, кислоты, белки, углеводы, спирты и др.) называют гидрофильными, а нерастворимые (например, жиры) — гидрофобными. Важнейшими органическими веществами, входящими в состав клеток, являются белки. Содержание белков в различных клетках колеблется от 10 до 20%. Белковые молекулы очень велики и представляют собой длинные цепочки (полимеры), собранные из повторяющихся единиц (мономеров). Мономерами белков являются аминокислоты. Длина, а следовательно, и масса белковой молекулы могут сильно варьировать: от двух аминокислот до многих тысяч. Короткие белковые молекулы принято называть пептидами. В состав белков входит около 20 видов аминокислот, соединенных между собой пептидными связями. Последовательность аминокислот в молекуле каждого белка строго определена и называется первичной структурой белка. Эта цепочка аминокислот свертывается в спираль, называемую вторичной структурой белка. У каждого белка эта спираль по-своему располагается в пространстве, скручиваясь в более или менее сложную третичную структуру, или глобулу, определяющую биологическую активность молекулы белка. Молекулы некоторых белков образованы несколькими удерживающимися вместе глобулами. Принято говорить, что такие белки имеют, кроме того, и четвертичную структуру. Белки выполняют целый ряд важнейших функций, без которых невозможно существование ни отдельно взятой клетки, ни целого организма. Структурно-строительная функция основана на том, что белки — важнейшие составляющие части всех мембран: в большинстве клеток есть цитоскелет, образованный определенными видами белков. В качестве примеров белков, выполняющих структурно-строительную функцию, можно привести коллаген и эластин, которые обеспечивают упругость и прочность кожи и являются основой связок, соединяющих мышцы с суставами и суставы между собой. Каталитическая функция белков заключается в том, что особые виды белков — ферменты — способны ускорять течение химических реакций, причем иногда во много миллионов раз. Все движения клеток осуществляются с помощью специ- альных белков (актин, миозин и др.). Таким образом, белки выполняют двигательную функцию. Другая функция белков, транспортная, проявляется в том, что они способны переносить кислород (гемоглобин) и целый ряд других веществ: железо, медь, витамины. Основой иммунитета также являются особые белки — антитела, способные связывать бактерии и другие чужеродные агенты, делая их безопасными для организма. Эта функция белков получила название защитной. Многие гормоны и другие вещества, регулирующие функции клеток и всего организма, являются короткими белками, или пептидами. Таким образом, белки выполняют регуляторные функции. (Подробно о регуляторных белках и пептидах см. в разделе, посвященном эндокринной системе.) При окислении белков выделяется энергия, которую организм может использовать. Однако белки слишком важны для организма, да и энергетическая ценность белков ниже, чем у жиров, поэтому обычно белки расходуются на энергетические нужды только в крайнем случае, при истощении запасов углеводов и жиров. Другой класс химических веществ, необходимый для жизни, — углеводы, или сахара. Углеводы подразделяются на моносахариды и полисахариды, построенные из моносахаридов. Среди моносахаридов важнейшими являются глюкоза, фруктоза, рибоза. Из полисахаридов в животных клетках чаще всего встречается гликоген, а в растительных — крахмал и целлюлоза. Углеводы выполняют две важнейшие функции: энергетическую и структурно-строительную. Так, для клеток нашего мозга глюкоза является практически единственным источником энергии, и уменьшение ее содержания в крови опасно для жизни. В печени человека хранится небольшой запас полимера глюкозы — гликогена, его достаточно, чтобы покрывать потребность в глюкозе в течение приблизительно двух суток. Суть структурно-строительной функции углеводов заключается в следующем: сложные углеводы, соединенные с белками (гликопротеины) или жирами (гликолипиды), входят в состав клеточных мембран, обеспечивая взаимодействие клеток между собой. В состав клеток входят также жиры, или липиды. Их мо- лекулы построены из глицерина и жирных кислот. К жиропо- добным веществам относятся холестерин, стероиды, фосфоли- пиды и др. Липиды входят в состав всех клеточных мембран, являясь их основой. Липиды гидрофобны и вследствие этого непроницаемы для воды. Таким образом, липидные слои мем- браны защищают содержимое клетки от растворения. Это их структурно-строительная функция. Однако липиды — важный источник энергии: при окислении жиров выделяется в два с лишним раза больше энергии, чем при окислении такого же количества белков или углеводов. Нуклеиновые кислоты представляют собой полимеры, построенные из мономеров — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. Существуют два вида нуклеиновых кислот:дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), отличающиеся по составу азотистых оснований и Сахаров. Азотистых оснований четыре: аденин, гуанин, цитозин и тимин. Они и определяют названия соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т) (рис. 1.1). Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, которые по всей длине соединены друг с другом водородными связями. Такую структуру,свойственную только молекулам ДНК, называют двойной спиралью. При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом обнаруживается важная закономерность: против аденина одной цепи всегда располагается тимин другой цепи, против гуанина — цитозин и наоборот. Это объясняется тем, что пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительны-ми, или комплементарными (от лат. complementum — дополнение), друг другу. Между аденином и тимином всегда возникают две, а между гуанином и цитозином — три водородные связи (рис. 1.2). Следовательно, у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых— числу цитидиловых. Зная последовательность нуклеотидов в одной цепи ДНК, по принципу комплементарности можно установить порядок нуклеотидов другой цепи. С помощью четырех типов нуклеотидов в ДНК записана вся важная информация об организме, передающаяся по наследству следующим поколениям, другими словами, ДНК выступает носителем наследственной информации. Рис. 1.1. Четыре нуклеоти- да, из которых построены все ДНК живой природы Молекулы ДНК в основном находятся в ядрах клеток, но небольшое их количество содержится в митохондриях и плас- тидах. Молекула РНК, в отличие от молекулы ДНК, — полимер, состоящий из одной цепочки значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из рибозы, остатка фосфорной кислоты и одного из четырех азотистых оснований. Три азотистых основания — аденин, гуанин и цитозин — такие же, как и у ДНК, а четвертое — урацил. Об- разование полимера РНК происходит через ковалентные связи между рибозой и остатком фосфорной кислоты соседних нуклеотидов. Выделяют три типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям. Рибосомные РНК (р-РНК) входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка. Транспортные РНК (т-РНК) — самые небольшие по размеру — транспортируют аминокислоты к месту синтеза белка. Информационные, или матричные, РНК (и-РНК) синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется. Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.
Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки. Важным химическим компонентом каждой клетки является аденозинтрифосфат (АТФ). Это нуклеотид, при распаде которого высвобождается энергия, необходимая для жизнедеятельности клетки, состоящий из азотистого основания, углевода рибозы и трех остатков фосфорной кислоты (рис. 1.3); содержится в цитоплазме, митохондриях, пластидах и ядрах. Структура АТФ неустойчива. При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмонофосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии. Структура АТФ неустойчива. При отделении одного остат- ка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмоно-фосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии.
Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при ее разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей (рис. 1.4). Для того чтобы синтезировать АТФ из АДФ, необходимо затратить столько же энергии, сколько выделяется при распаде этого вещества. В клетках АТФ синтезируется в процессе распада органических молекул: углеводов, жиров, реже белков.
Витамины (от лат. vita — жизнь) — сложные биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов. В отличие от других органических веществ витамины не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины), другие витамины поступают в организм с пищей. Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах. Различают жирорастворимые (A, D, Е и К) и водорастворимые (В, С, PP и др.) витамины. Витамины играют большую роль в обмене веществ и других процессах жизнедеятельности организма. Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих физиологических функций в организме. Кроме перечисленных неорганических (вода, минеральные соли) и органических соединений (углеводы, липиды, белки, нуклеиновые кислоты, витамины), в любой клетке всегда есть много других органических веществ. Они являются промежуточными или конечными продуктами биосинтеза и распада.